35 research outputs found

    An internal communication model for multi-campus higher education institutions in South Africa

    Get PDF
    Published ArticleIn this article the authors propose a model for South African multi-campus universities, aimed at improving the effectiveness of internal communication. The development of the model was informed by three factors: the bureaucratic nature of higher education institutions; the restructured South African higher education landscape comprising various multi-campus universities with campuses situated geographically apart; and the fact that the Central University of Technology, Free State (CUT) identified certain shortcomings in its internal communication practices during a climate survey. Various communication models, including those employed by the corporate sector, were studied, after which an extensive empirical investigation was carried out. The proposed model incorporates essential features, but also addresses shortcomings of existing internal communication models. The characteristics of the model were developed from an empirical investigation that included a mixed-method research as well as the recommendations of communication executives from seven multi-campus universities in South Africa

    Savanna Tree Seedlings are Physiologically Tolerant to Nighttime Freeze Events

    Get PDF
    Citation: O'Keefe, K., Nippert, J. B., & Swemmer, A. M. (2016). Savanna Tree Seedlings are Physiologically Tolerant to Nighttime Freeze Events. Frontiers in Plant Science, 7, 13. doi:10.3389/fpls.2016.00046Freeze events can be important disturbances in savanna ecosystems, yet the interactive effect of freezing with other environmental drivers on plant functioning is unknown. Here, we investigated physiological responses of South African tree seedlings to interactions of water availability and freezing temperatures. We grew widely distributed South African tree species (Colophospermum mopane, Combretum apiculaturn, Acacia nigrescens, and Cassia abbreviate) under well watered and water-limited conditions and exposed individuals to nighttime freeze events. Of the four species studied here, C. mopane was the most tolerant of lower water availability. However, all species were similarly tolerant to nighttime freezing and recovered within one week following the last freezing event. We also show that water limitation somewhat increased freezing tolerance in one of the species (C. mopane). Therefore, water limitation, but not freezing temperatures, may restrict the distribution of these species, although the interactions of these stressors may have species specific impacts on plant physiology. Ultimately, we show that unique physiologies can exist among dominant species within communities and that combined stresses may play a currently unidentified role in driving the function of certain species within southern Africa

    Lowveld Savanna Bush Cutting Alters Tree-Grass Interactions

    Get PDF
    Savannas are characterized by the coexistence of trees and grasses, and their interactions are modified by water availability and herbivore activity. Many savannas are experiencing bush encroachment, resulting in reduced herbaceous productivity and shifts in savanna structure. This study aims to understand the effects of tree density and tree cutting on herbaceous productivity, water use, and herbivore abundance in a mopane-dominated lowveld savanna. We present data from a 4-year mopane-cutting experiment in the Mthimkhulu Game Reserve bordering Kruger National Park (South Africa). We established three 60x60 m plots for experimental manipulation where mopane stems and re-sprouting shoots were cut 2-3 times per year (2015-2019). We established transects within the plots to measure grass productivity and herbivore activity (counts of tracks and dung). Additionally, we measured root non-structural carbohydrates within cut and uncut mopane to assess the impact of cutting on energy storage. We used stable isotopes of xylem and soil water at multiple depths to infer changes in functional water use of coexisting mopane and grass species. Cutting had limited effects on mopane survival during this 5-year period, but re-sprouting stems had reduced height and starch concentrations than uncut trees. Cutting mopane resulted in shallower-soil water use in 2017 and tended to increase variability in root water uptake across multiple soil depths. The cut treatment tended to have higher grass cover and productivity than the control treatment by the 3rd growing season. Visitation of grazers increased in the cut plots relative to uncut plots by 2017, suggesting increased grass cover promotes grazer visitation. These results emphasize the importance of top-down drivers on savanna tree cover and the impacts of bush encroachment on grass biomass and herbivore presence. We suggest repeated cutting or browsing pressure is needed to suppress woody cover and increase grass production in lowveld savannas

    Droughts and the ecological future of tropical savanna vegetation

    Get PDF
    1. Climate change is expected to lead to more frequent, intense and longer droughts in the future, with major implications for ecosystem processes and human livelihoods. The impacts of such droughts are already evident, with vegetation dieback reported from a range of ecosystems, including savannas, in recent years. 2. Most of our insights into the mechanisms governing vegetation drought responses have come from forests and temperate grasslands, while responses of savannas have received less attention. Because the two life forms that dominate savannas—C3 trees and C4 grasses—respond differently to the same environmental controls, savanna responses to droughts can differ from those of forests and grasslands. 3. Drought‐driven mortality of savanna vegetation is not readily predicted by just plant drought‐tolerance traits alone, but is the net outcome of multiple factors, including drought‐avoidance strategies, landscape and neighborhood context, and impacts of past and current stressors including fire, herbivory and inter‐life form competition. 4. Many savannas currently appear to have the capacity to recover from moderate to severe short‐term droughts, although recovery times can be substantial. Factors facilitating recovery include the resprouting ability of vegetation, enhanced flowering and seeding and post‐drought amelioration of herbivory and fire. Future increases in drought severity, length and frequency can interrupt recovery trajectories and lead to compositional shifts, and thus pose substantial threats, particularly to arid and semi‐arid savannas. 5. Synthesis. Our understanding of, and ability to predict, savanna drought responses is currently limited by availability of relevant data, and there is an urgent need for campaigns quantifying drought‐survival traits across diverse savannas. Importantly, these campaigns must move beyond reliance on a limited set of plant functional traits to identifying suites of physiological, morphological, anatomical and structural traits or “syndromes” that encapsulate both avoidance and tolerance strategies. There is also a critical need for a global network of long‐term savanna monitoring sites as these can provide key insights into factors influencing both resistance and resilience of different savannas to droughts. Such efforts, coupled with site‐specific rainfall manipulation experiments that characterize plant trait–drought response relationships, and modelling efforts, will enable a more comprehensive understanding of savanna drought responses

    Plant diversity in secondary, montane grasslands – a case study of the abandoned plantations of Mariepskop Mountain, South Africa

    Get PDF
    Grasslands are one of the most threatened terrestrial ecosystem types, and montane grasslands of particular conservation concern. Despite high rates of transformation in recent decades, croplands and plantations are being abandoned in parts of many countries, creating an opportunity for conservation of montane grasslands through restoration. We report on the changes in the cover of major vegetation types (indigenous forest, grassland, and plantations) between 1935 and 2022, in an area that was intensively afforested from 1930 to 1960 and abandoned in 2000. Montane grassland at the site declined from over 50% of all landcover to below 15%, but subsequently recovered to 30% within 20 years. Many former plantations developed into secondary grassland with estimated gamma plant species richness of 231 for herbaceous species and 45 for savanna species. These are high values considering the size of the study area (4000 ha), and comparable to estimates from primary grassland sites in the broader region. However, at the scale of 1 m2 sampling quadrats, richness in the secondary grasslands was below that recorded in the last remaining patches of primary grassland at the site (means of 2.6 versus 4.7 for graminoid species, and 1.9 versus 2.9 for forbs). Some of the former Eucalyptus plantations had transformed into novel savannas dominated by fire-tolerant, resprouting trees, and may require more active restoration. Secondary grasslands such as those reported on here could potentially make a significant contribution to the conservation of montane biodiversity over the coming decades, warranting further research (both socio-economic and ecological) on the factors that lead to abandonment and promote the emerge of secondary grasslands of high diversity

    Effect of intensive structured care on individual blood pressure targets in primary care: Multicentre randomised controlled trial

    Get PDF
    Extent: 16p.Objective: To determine the effectiveness of intensive structured care to optimise blood pressure control based on individual absolute risk targets in primary care. Design: Pragmatic multicentre randomised controlled trial. Setting: General practices throughout Australia, except Northern Territory, 2009-11. Participants: Of 2185 patients from 119 general practices who were eligible for drug treatment for hypertension according to national guidelines 416 (19.0%) achieved their individual blood pressure target during a 28 day run-in period of monotherapy. After exclusions, 1562 participants not at target blood pressure (systolic 150 (SD 17) mm Hg, diastolic 88 (SD 11) mm Hg) were randomised (1:2 ratio) to usual care (n=524) or the intervention (n=1038). Intervention: Computer assisted clinical profiling and risk target setting (all participants) with intensified follow-up and stepwise drug titration (initial angiotensin receptor blocker monotherapy or two forms of combination therapy using angiotensin receptor blockers) for those randomised to the intervention. The control group received usual care. Main outcome measures: The primary outcome was individual blood pressure target achieved at 26 weeks. Secondary outcomes were change in mean sitting systolic and diastolic blood pressure, absolute risk for cardiovascular disease within five years based on the Framingham risk score, and proportion and rate of adverse events. Results: On an intention to treat basis, there was an 8.8% absolute difference in individual blood pressure target achieved at 26 weeks in favour of the intervention group compared with usual care group (358/988 (36.2%) v 138/504 (27.4%)): adjusted relative risk 1.28 (95% confidence interval 1.10 to 1.49, P=0.0013). There was also a 9.5% absolute difference in favour of the intervention group for achieving the classic blood pressure target of ≤140/90 mm Hg (627/988 (63.5%) v 272/504 (54.0%)): adjusted relative risk 1.18 (1.07 to 1.29, P<0.001). The intervention group achieved a mean adjusted reduction in systolic blood pressure of 13.2 mm Hg (95% confidence interval −12.3 to −14.2 mm Hg) and diastolic blood pressure of 7.7 mm Hg (−7.1 to −8.3 mm Hg) v 10.1 mm Hg (−8.8 to 11.3 mm Hg) and 5.5 mm Hg (−4.7 to −6.2 mm Hg) in the usual care group (P<0.001). Among 1141 participants in whom five year absolute cardiovascular risk scores were calculated from baseline to the 26 week follow-up, the reduction in risk scores was greater in the intervention group than usual care group (14.7% (SD 9.3%) to 10.9% (SD 8.0%); difference −3.7% (SD 4.5%) and 15.0% (SD 10.1%) to 12.4% (SD 9.4%); −2.6% (SD 4.5%): adjusted mean difference −1.13% (95% confidence interval −0.69% to −1.63%; P<0.001). Owing to adverse events 82 (7.9%) participants in the intervention group and 10 (1.9%) in the usual care group had their drug treatment modified. Conclusions: In a primary care setting intensive structured care resulted in higher levels of blood pressure control, with clinically lower blood pressure and absolute risk of future cardiovascular events overall and with more people achieving their target blood pressure. An important gap in treatment remains though and applying intensive management and achieving currently advocated risk based blood pressure targets is challenging.Simon Stewart, Melinda J Carrington, Carla H Swemmer, Craig Anderson, Nicol P Kurstjens, John Amerena, Alex Brown, Louise M Burrell, Ferdinandus J de Looze, Mark Harris, Joseph Hung, Henry Krum, Mark Nelson, Markus Schlaich, Nigel P Stocks, Garry L Jennings, on behalf of the VIPER-BP study investigator

    Precipitation gradients drive high tree species turnover in the woodlands of eastern and southern Africa

    Get PDF
    Savannas cover one-fifth of the Earth's surface, harbour substantial biodiversity, and provide a broad range of ecosystem services to hundreds of millions of people. The community composition of trees in tropical moist forests varies with climate, but whether the same processes structure communities in disturbance-driven savannas remains relatively unknown. We investigate how biodiversity is structured over large environmental and disturbance gradients in woodlands of eastern and southern Africa. We use tree inventory data from the Socio-Ecological Observatory for Studying African Woodlands (SEOSAW) network, covering 755 ha in a total of 6780 plots across nine countries of eastern and southern Africa, to investigate how alpha, beta, and phylogenetic diversity varies across environmental and disturbance gradients. We find strong climate-richness patterns, with precipitation playing a primary role in determining patterns of tree richness and high turnover across these savannas. Savannas with greater rainfall contain more tree species, suggesting that low water availability places distributional limits on species, creating the observed climate-richness patterns. Both fire and herbivory have minimal effects on tree diversity, despite their role in determining savanna distribution and structure. High turnover of tree species, genera, and families is similar to turnover in seasonally dry tropical forests of the Americas, suggesting this is a feature of semiarid tree floras. The greater richness and phylogenetic diversity of wetter plots shows that broad-scale ecological patterns apply to disturbance-driven savanna systems. High taxonomic turnover suggests that savannas from across the regional rainfall gradient should be protected if we are to maximise the conservation of unique tree communities

    More Stable Productivity of Semi Natural Grasslands than Sown Pastures in a Seasonally Dry Climate

    Get PDF
    In the Neotropics the predominant pathway to intensify productivity is generally thought to be to convert grasslands to sown pastures, mostly in monoculture. This article examines how above-ground net primary productivity (ANPP) in semi-natural grasslands and sown pastures in Central America respond to rainfall by: (i) assessing the relationships between ANPP and accumulated rainfall and indices of rainfall distribution, (ii) evaluating the variability of ANPP between and within seasons, and (iii) estimating the temporal stability of ANPP. We conducted sequential biomass harvests during 12 periods of 22 days and related those to rainfall. There were significant relationships between ANPP and cumulative rainfall in 22-day periods for both vegetation types and a model including a linear and quadratic term explained 74% of the variation in the data. There was also a significant correlation between ANPP and the number of rainfall events for both vegetation types. Sown pastures had higher ANPP increments per unit rainfall and higher ANPP at the peak of the rainy season than semi-natural grasslands. In contrast, semi-natural grasslands showed higher ANPP early in the dry season. The temporal stability of ANPP was higher in semi-natural grasslands than in the sown pastures in the dry season and over a whole annual cycle. Our results reveal that, contrary to conventional thinking amongst pasture scientists, there appears to be no increase in ANPP arising from replacing semi-natural grasslands with sown pastures under prevailing pasture management practices in seasonally dry climates, while the temporal distribution of ANPP is more even in semi-natural grasslands. Neither sown pastures nor semi-natural grasslands are productive towards the end of the dry season, indicating the potential importance of the widespread practice of retaining tree cover in pastures

    Shifts in Species Composition Constrain Restoration of Overgrazed Grassland Using Nitrogen Fertilization in Inner Mongolian Steppe, China

    Get PDF
    Long-term livestock over-grazing causes nitrogen outputs to exceed inputs in Inner Mongolia, suggesting that low levels of nitrogen fertilization could help restore grasslands degraded by overgrazing. However, the effectiveness of such an approach depends on the response of production and species composition to the interactive drivers of nitrogen and water availability. We conducted a five-year experiment manipulating precipitation (NP: natural precipitation and SWP: simulated wet year precipitation) and nitrogen (0, 25 and 50 kg N ha-1 yr-1) addition in Inner Mongolia. We hypothesized that nitrogen fertilization would increase forage production when water availability was relatively high. However, the extent to which nitrogen would co-limit production under average or below average rainfall in these grasslands was unknown
    corecore